Какие стали относятся к аустенитному классу?

Содержание

Сталь аустенитного класса что это?

Какие стали относятся к аустенитному классу?

Аустенит — это твердый однофазный раствор углерода до 2 % в y-Fe. его особенность заключается в последовательности, в которой располагаются атомы, т. е. в строении кристаллической решетки. Она бывает 2 типов:

  1. ОЦК a-железо (объемно — центрированная – по одному атому располагается в 8-ми вершинах куба и 1 в центре).
  2. ГЦК y-железо (гране-центрированная по одному атому находится в 8-ми вершинах куба и по одному находятся на каждой из 8-ми граней, всего 16 атомов).

Простыми словами: аустенит — это структура или состояние металла, определяющая его технические характеристики, которые получить в другом состоянии невозможно, т.к. меняя строение, металл изменяет и свойства. Без аустенита невозможна такая технология как закалка, которая является самой распространенной, дешевой, технически доступной, а в некоторых случаях и единственной технологией упрочнения металла.

Свойства аустенитных сталей и где их используют  

Само состояние железа в Y-фазе (аустенит) уникально, благодаря ему металл является жаропрочным (+850 ºC), холодостойким (-100 ºC и ниже t), способен обеспечивать коррозионную и электрохимическая стойкость и другие важнейшие свойства, без которых были бы немыслимы многие технологические процессы в:

  • нефтеперерабатывающей и химической отраслях;
  • медицине;
  • космическом и авиастроении;
  • электротехнике.     

Жаропрочность — свойство стали не менять своих технических свойств при критических температурах с течением времени. Разрушение происходит при неспособности металла противостоять дислокационной ползучести, т. е. смещению атомов на молекулярном уровне.

Постепенно происходит разупрочнение, и процесс старения металла начинает происходить все быстрее. Это происходит с течением времени при низких или высоких температурах.

Так вот, насколько этот процесс растянется во времени — это и есть способность металла к жаропрочности.

Коррозионная стойкость — способность металла противостоять разрушению (дислокационной ползучести) не только с течением времени и при криогенных и высоких температурах, но еще и в агрессивных средах, т. е. при взаимодействии с веществами активно вступающих в реакцию с одним или несколькими компонентных элементов. Разделяют 2 типа коррозии:

  1. химическая — окисление металла в таких средах, как газовая, водная, воздушная;
  2. электрохимическая — растворение металла в кислотных средах, имеющих положительно или отрицательно заряженные ионы. При разности потенциалов между металлом и электролитом, происходит неизбежная поляризация, приводящая к частичному взаимодействию двух веществ.  

Холодостойкость — способность сохранять структуру при криогенных температурах с течением длительного времени.

Из-за искажения кристаллической решетки структура стали холодостойкой способна принимать строение присущее обычным малолегированным сталям, но уже при очень низких температурах.

Но этим сталям присущ один недостаток — иметь полноценные свойства они могут только при минусовых температурных значениях, t — ≥ 0 для них недопустимы.

Методы получения аустенита

Аустенит — это структура металла, которая в малолегированных марках возникает в диапазоне температур 550-743 ºC.

Как можно сохранить эту структуру и, соответственно, свойства за границами этих t? — Ответ: методом легирования.

При наполнении решетки аустенита атомами других элементов, образуются структурные искажения, а процесс восстановления ОЦК–решетки (естественное строение при нормальных температурах) сдвигается на сотни градусов. 

Как эти свойства проявляются и в каком состоянии, зависит от добавочных т. е. легирующих элементов и термической обработки детали, которую она может дополнительно получать. Причем влияют не только элементы, но их соотношение, так аустенитная сталь подразделяется на:

  • хромомарганцевую и хромникельмарганцевую (07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T);
  • хромоникелевую (08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
  • высококремнистую (02Х8Н22С6, 15Х18Н12C4Т10);
  • хромоникельмолибденовую (03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т).

Химические элементы и их влияние на аустенит  

Пособников у аустенита немного, использоваться они могут как совместно, так и частично, в зависимости от того какие свойства нужно получить:  

  • Хром — при его содержании более 13 % на поверхности образует оксидную пленку, толщиной 2-3 атома, которая исключает коррозию. В аустените хром находится свободном состоянии, при условии минимального содержания углерода, так как тот сразу образует карбид Cr23C6, что приводит к сегрегации хрома и обедняет большие участки матрицы, делая ее доступной для окисления, сам карбид Cr23C6  способствует межкристаллитной коррозии аустенита.
  • Углерод (максимальное его значение не более 10 %). Углерод в аустените находится в соединенном состоянии, основная его задача — образование карбидов, которые обладают предельной прочностью.
  • Никель — основной элемент, который стабилизирует желаемую структуру. Достаточно содержание 9-12 %, чтобы перевести сталь в аустенитный класс. Измельчает и сдерживает рост зерна, что обеспечивает высокую пластичность;
  • Азот заменяет атомы углерода, присутствие которых в сталях электрохимически стойких снижено до 0,02 %;
  • Бор — уже в тысячных процентах увеличивает пластичность, в аустените, измельчая его зерно;
  • Кремний и марганец не указываются как основные легирующие элементы в маркировке, но они являются основными или обязательными легирующими элементами аустенита, которые придают прочность и стабилизируют структуру.
  • Титан и ниобий — при температуре выше 700 °С карбид хрома распадается и образуется стойкий TiC и NiC, который не вызывает межкристаллитную коррозию, но их использование не всегда оправданно холодостойких сталях, т.к. оно повышает границу распада аустенита.

Термическая обработка

Аустенит подвергают обработке только по необходимости. Основные операции это высокотемпературный отжиг (1100-1200 °С в течение 0,5-2,5 часа) при котором устраняется хрупкость. Далее закалка с охлаждением в масле или на воздухе.

Аустенитную сталь, легированную алюминием, подвергают двойной закалке и двойной нормализации:

  1. при t 1200 °С;
  2. при t 1100 °C.
Читайте также  Состав легированной стали в процентах

Механическая окончательная обработка проводится до закалки, но после отжига.

Изделия из аустнитных сталей

Полуфабрикаты, в которых поставляется сталь, представляет собой:

  • Листы, толщиной 4-50 мм с гарантированным химическим составом и механическими свойствами.
  • Поковки.  Ввиду сложной обработки этих сталей методом сварки, изготовление некоторых деталей представляет собой получение практически готовых изделий уже на этапе литья. Это роторы, диски, турбины, трубы двигателей. 

Методы соединения аустенита:

  • Припой – очень сильно ограничивает использование металла при t более 250 °С;
  • Сваривание – возможно в защитной атмосфере (газовой, флюсовой), при последующей термической обработке.
  • Механическое соединение – болты и другие крепежные элементы,  изготовленные из аналогичного материала.

Аустенитные стали одни из самых дорогих технических сталей, использование которых ограничивается  узкой специализацией оборудования. 

Источник: https://prompriem.ru/stati/austenit.html

Аустенитные нержавеющие стали

Одной из востребованных разновидностей нержавеющей стали остается аустенитная нержавеющая. Как следует из названия, такого типа материал устойчив к возникновению коррозии.

Защитный эффект достигается путем добавления в состав обычных дополнений. Здесь в качестве таких материалов выступает хром и никель. Хрома в составе 18%, а никеля 10%.

На поверхности создается тонкий слой, который препятствует внешнему воздействию агрессивных сред.

Для хромоникелевых сталей данной разновидности создан ГОСТ 5632-72. В нем прописываются центральные требования к показателям продукции, на которые необходимо ориентироваться при её выборе и оценке. В ГОСТ прописано несколько разновидностей материала:

Источник: https://varimtutru.com/stal-austenitnogo-klassa-chto-eto/

Классификация нержавеющих сталей

Какие стали относятся к аустенитному классу?

Нержавеющая сталь представляет собой сложный многокомпонентный сплав на основе железа. В его состав входят углерод и другие элементы, повышающие устойчивость к агрессивной среде. Одним из основных легирующих компонентов является хром, содержание которого в сплаве должно быть не менее 12%. Присутствие хрома обеспечивает:

  • повышение прочности сплава;
  • хорошую свариваемость;
  • продление срока эксплуатации;
  • эстетичный вид.

Стали с добавкой хрома хорошо поддаются холодной механической обработке. На поверхности металла образуется оксидная пленка, которая защищает детали от коррозии. Кроме хрома в состав стали включают титан, никель, кобальт, ниобий, титан и молибден. Нержавеющие стали с разным качественным и количественным составом отличаются технологическими и эксплуатационными свойствами и применяются в разных отраслях.

Группы нержавеющих сталей по химическому составу

В зависимости от набора основных легирующих элементов в химическом составе различают следующие группы нержавеющих сталей:

  • Хромистые.
  • Хромоникелевые.
  • Хромомарганцевоникелевые.

Хромистые стали

Как ясно из названия группы, главным легирующим элементом хромистых сталей является хром. Согласно ГОСТ 5632-2014 номинальное содержание хрома может быть 13, 17 или 25/28 %. К первому типу принадлежат марки 08Х13, 13х13, 20Х13, 30Х13, 40Х13, ко второму — 12Х17 и 08Х17Т, к третьему — 15Х25Т и 15Х28. Хромистые стали второго и третьего типа относятся к ферритному классу, а первого типа — могут иметь ферритный, мартенситный или феррито-мартенситный класс.

Хромоникелевые стали

Хромоникелевые стали содержат 14-20% хрома, 12-14% никеля. Устойчивы к кислотам и высоким температурам, хорошо поддаются технологическим деформациям, в частности, штамповке, и свариванию. Обработке резанием поддаются удовлетворительно. К хромоникелевым относят стали марок 20X17Н2, 14Х17Н2, 20X17Н2, 14X17Н2.

Хромомарганцевоникелевые стали

Частичная замена никеля более дешевым марганцем способствует снижению стоимости материала без заметного снижения его полезных свойств. Добавление марганца повышает пластичность нержавеющей стали и помогает сохранить немагнитность, увеличивается ударная вязкость при низких температурах. Но, следует учитывать, что хромомарганцевоникелевые стали трудно свариваются и склоны к отпускной хрупкости. Основные представители данной группы: 03Х20Н16АГ6, 07Х21Г7АН5, 10Х14Г14Н4Т.

С учетом структуры своей кристаллической решетки хромоникелевые и хромомарганцевоникелевые стали делятся аустенитные, аустенитно-ферритные, аустенитно-ферритные и аустенитно-карбидные.

Классы нержавеющих сталей по микроструктуре

Различия в механических и технологических свойствах сталей обусловлены особенностями их кристаллической структуры. По этому признаку нержавеющие стали подразделяют на:

  • Ферритные.
  • Мартенситные.
  • Мартенситно-ферритные.
  • Аустенитные.
  • Аустенитно-мартенситные.
  • Аустенитно-ферритные.
  • Аустенитно-карбидные.

Ферритные стали

хрома в этом типе сталей приближается к 20%. Ферритные стали имеют высокую устойчивость к химически агрессивным средами, ярко выраженные магнитные свойства, хорошо поддаются обработке. Недорогие ферритные стали склонны к росту зерна и, как следствие, – к межкристаллитной коррозии. При высоких температурах происходит охрупчивание металла. Используются для производства неответственных конструкций, а также изделий, предназначенных для эксплуатации в агрессивных средах. К ферритному классу относятся стали марок: 08X17Т, 12X17 (AISI 430), 15X28, 15Х25Т, 15Х25Т.

Мартенситные и мартенситно-ферритные стали

Содержат до 20% хрома. Обладают низким порогом хладоломкости, пластичны, имеют высокую ударную вязкость, не склонны к образованию трещин.  Устойчивы к износу, коррозии в слабоагрессивных средах и атмосфере. Свариваемость разных марок мартенситных сталей сильно разнится. Некоторые мартенситные стали склонны к тепловой хрупкости. Применяются для изготовления режущего инструмента, измерительных приборов, высокопрочных деталей и ответственных конструкций, предназначенных для эксплуатации в широком диапазоне температур. Марки мартенситных сталей: 20Х13 (AISI 420), 40Х13, 12Х13.

Аустенитные стали

Суммарное содержание хрома и никеля достигает 33%. Аустенитные стали обладают наилучшим сочетанием технологических качеств. Им свойственна пластичность, высокая коррозионная стойкость в большинстве рабочих сред, прочность. К аустенитному классу относятся стали 06ХН28МДТ, 08Х18Н10 (AISI 304), 10Х13Н17М2 (AISI 316), 12Х15Г9НД (AISI 201), 12Х18Н10Т (AISI 321), 20Х23Н18 (AISI 310S). Из них прокатывают множество видов полуфабрикатов: нержавеющие листы, трубы, сортовые изделия и арматуру.

Аустенитно-ферритные стали

Отличаются от аустенитных и ферритных сталей большей прочностью, менее склонны к росту зерна и межкристаллитной коррозии, устойчивы к органическим кислотам и азотной кислоте. Хорошо поддаются свариванию, не намагничиваются. По устойчивости к хладоломкости занимают промежуточное положение между ферритными и аустенитными сталями и хуже поддаются пластическим деформациям по сравнению с аустенитными сплавами. Используются для производства оборудования для металлургической, пищевой, химической, промышленности, в судостроении. К аустенитно-ферритным сталям относятся: 09ХН21Н6М2Т, 10Х25Г6ФТ, 08Х20Н6МД2Т, 09Х22Н5Т, 10Х25Н6Т.

Аустенитно-мартенситные стали

Свойства стали зависят от соотношения мартенсита и аустенита в структуре металла. Характеризуются оптимальным соотношением прочности и пластичности. Марки: 08Х17Н8Ю, 07Х16Н6, 09Х15Н9Ю.

Источник: http://www.inoxpoint.kz/informaciya/poleznye-stati/27-klassifikaciya-nerzhaveyushhih-stalej

Аустенитная сталь: что это такое, марки, класс, свойства, применение

Какие стали относятся к аустенитному классу?

29Янв

При изготовлении металла на предприятии используется классификация заготовок по структурным особенностям. Обычно металлурги наблюдают за изменениями структуры в ходе металлообработки в том числе после термообработки. И одним из таких состояний является аустенит, а уже после закалки с последующим охлаждением можно получить перлит, мартенсит и прочие изменения. В статье расскажем про то, какие стали относятся к аустенитному классу, какие свойства имеют эти материалы.

Читайте также  Как отличить чугун от стали визуально?

Данное образование может быть получено в стальной заготовке, то есть в растворе железа с добавлением углерода. Особенность данного состояния заключается в том, как располагаются атомы этих веществ. Они последовательно образуют рисунок в одном из двух вариантов:

  • ОЦК А-Fe. Это объемно-центрированное строение, согласно которому атомы располагаются так: они находятся на каждой вершине куба (всего их 8), а также один находится в самом центре). Такой вариант получается не часто, в среднем в 10% случаев.

  • ГЦК У-Fe. Объемность строения сохраняется, но к предыдущем вершинным точкам добавляется еще такое же количество – они размещаются по центру каждой грани. А в сердцевине атома нет. Таким образом, всего их 16. Это наиболее часто появляющаяся структура – гранецентрированная. Она очень крепкая по отношению к низким и высоким температурам, а также к нагрузкам.

Если сказать, что это такое значит «аустенитная сталь» по простому, то это особенная структура металла, которая предопределяет технические характеристики сплава. При изменении его состояния (нагреве, охлаждении и т.д.) меняются и свойства. Именно благодаря прохождению через аустенит с последующим охлаждением возможна такая популярная термообработка, как закалка (нагрев выше критической точки – до изменения кристаллической решетки). Данная процедура пользуется популярностью, потому что это отличный недорогой и достаточно технологически простой способ повышения прочности металла.

Данная модификация металла отличается высокой степенью легирования (наиболее частотная легирующая добавка – хром). Ее особенность – наличие гранецентрированной решетки, а также то, что она сохраняется даже при экстремальном холоде. Из основных характеристик аустенитов – прочность, устойчивость к деформациям даже при нагреве. Все это позволяет использовать изделия из материала в самых опасных, агрессивных средах, очень активно они применяются в машиностроении, а также в химической и нефтяной промышленности.

статьи

Механические свойства аустенитных сталей

В момент кристаллизации металл проходит 1 фазу, и после этого кристаллическая решетка остается неизменной даже при воздействии сверхнизких температур, например, -200 градусов. Сплав имеет в основу железо и обязательно подвергается легированию. Наиболее часто используются такие легирующие добавки как никель и хром, в меньшей концентрации добавляются прочие примеси. В зависимости от того, насколько велики пропорции химических металлических и неметаллических веществ, меняются и характеристики – химические, физические, технологические, появляются особые свойства.

В процессе легирования используют добавки:

  • Ферритизаторы. Они стабилизируют структуру аустенита, а также после охлаждения увеличивают долю феррита. Также они предопределяют образование ОЦК-решетки. К ним относятся следующие элементы: ванадий, вольфрам, титан, кремний, ниобий, молибден.

  • Аустенизаторы. Они расширяют область аустенита. Интересно, что есть даже термин аустенизация – это специальный нагрев, как во время закалки, с последующим кратковременным выдерживанием и охлаждением.

Не все марки класса аустенитных сталей обладают одинаковыми свойствами. Ведь кроме метода термообработки, важен еще и состав. Поэтому как и во всех других случаях при рассмотрении структурных разновидностей сплавов, следует учитывать входящие компоненты и пропорции. Мы отметим, какие свойства характерны некоторым из аустенитов:

  • Нержавеющие, устойчивые к коррозии. Производство этих популярных сталей регламентируется нормативным документом ГОСТ 5632-2014. Согласно ему, в таких составах находится 18% хрома, 30% никеля и 0,25% углерода. А еще могут быть различные примеси (как полезные, так и вредные), например, кремний, марганец и молибден.

    Коррозионная невосприимчивость настолько ценится, что применяется повсеместно – от изготовления изделий бытового назначения до сложных узлов в машиностроении. Вещества вступают в реакцию с кислородом и образуют на поверхности оксидную пленку. Именно она является защитной и не нарушается даже при сильных температурных перепадах.

    Невосприимчивость к нагреву объясняется достаточно низкой углеродистостью.

  • Аустенитные жаропрочные стали. У них очень высокая предельная точка нагрева, поэтому их можно использовать в сложных подвижных узлах, а также при непосредственном контакте с паром, огнем и иными раскаленными предметами. Температура вплоть до 1100 градусов им абсолютно не страшна, она не сделает существенных изменений в глубинной структуре материала. Это объясняется тем, что сплав обладает ГЦК-решеткой и такими добавками как бор, ниобий, молибден, ванадий и вольфрам. Перечисленные примеси и увеличивают устойчивость к жару. Приведем пример использования – турбины самолетов, все элементы двигателя внутреннего сгорания автомобиля и пр.

  • Хладостойкие. Чтобы добиться такого эффекта, следует изготовить высоколегированную сталь с высокой концентрацией никеля (25%) и хрома (19%). Интересной особенностью данных изделий является то, что высокая прочность, пластичность поддерживаются только на морозе, в то время как при комнатной температуре характеристики могут поменяться в негативную сторону.

Отметим, что состав аустенитной стали является дорогостоящим, поскольку в него добавлено большое количество легирующих компонентов. Поэтому далеко не все производственные сферы могут похвастаться наличием деталей из аустенита. Основными примесями являются хром и никель, а они дорого стоят.

Данному классу сплавов характерны различные контролируемые структурные превращения, так можно получить:

  • Феррит, если нагреть состав до сверхвысоких температур.

  • Межкристаллическая коррозия. Этого стараются не допускать, поскольку данный процесс приводит ко внутренним разрушениям структуры, глубоких слоев и поверхности. Дело в том, что когда железо нагревается более 900 градусов, то появляются избыточные фазы карбидов, которые, в свою очередь, уже влияют на коррозийные преобразования.

  • Перлит. Это часто используемая структура металла, которая представлена в виде небольших зерен и пластин. Его образование неизбежно при медленном, постепенном охлаждении заготовки непосредственно вместе с печью до температуры в 730 градусов. Именно на этом рубеже происходят изменения в кристаллической решетке из-за эвтектоидного распада. Также его называют перлитным превращением. В ходе данного процесса одновременно растет феррит и цементит, имеющие пластинчатую форму.

  • Мартенсит. Это еще один тип структуры, представленный пластинами в виде иголок или тонких реек. Он образуется, когда резко снижают температуру изделия, например, сразу из печи и в холодную воду или в масло.

Таким образом, любые превращения являются предусмотренными заранее и контролируемыми. Обычно решающим фактором процедуры является время выдержки и температура нагрева и охлаждения. Это определяется содержанием углерода и прочих легирующих добавок. Те сплавы, которые имеют наименьшее количество примесей, кристаллизуются быстрее.

Читайте также  Сверла для сверления каленой стали

Методы получения аустенитных углеродистых сталей

Весь первоначальный процесс можно описать так: чтобы получить аустенит, необходимо чтобы в первоначальной структуре сплавов начали появляться и расти зерна. Сперва зернистость меняется у поверхности при фазах появления карбидов, со временем полностью толща заготовки меняет свою структуру.

Второй способ изготовления аустенита – это нагрев до 900 градусов перлитной модификации железа (после эвтектоидного распада). Такой сплав состоит частично из цементита, на вторую часть из феррита. Чтобы такое превращение произошло, необходима минимальная углеродистость стали – не меньше, чем 0,66% содержание вещества. После того как повышается температура более чем на 900 градусов, ферритная структура перевоплощается в аустенитную, а цементитная полностью растворяется. Получается прекрасного качества нержавейка.

Есть еще один вариант – с титановой смесью. В таких случаях берется металлическая заготовка, она помещается в индукционную печь, в которой поддерживается вакуум. В ней сперва достигается высокий жар, а затем он долгий период поддерживается. За это время происходит диазотирование, то есть удаление из стального расплава атомов азота. Временной промежуток определяется индивидуально в зависимости от массы заготовки. Затем постепенно добавляются титан и другие металлические и неметаллические примеси, которые образуют нитриды в реакции с железом.

Но основной способ получения аустенитной стали базируется на создании высоколегированного хромоникелевого сплава. Легировать изделие можно с помощью добавления хрома и никеля. После того как вещества добавлены в тугой раствор, нужно продолжительное время поддерживать высокую температуру, это дает:

  • устойчивость к коррозии;

  • прочность;

  • жаростойкость;

  • увеличенное выделение карбидов.

А если добавить молибден и фосфор, то можно добиться повышенной вязкости и усталостной прочности.

Химические элементы и их влияние на аустенит

Как и любая легированная сталь, в своей основе данная может иметь ряд легирующих добавок. Давайте посмотрим, как их содержание в расплаве влияет на основные качества металла:

  • Хром. Его высокая концентрация, превышающая 13% (но не более 19%), способствует созданию оксидной пленки. Она, как известно, препятствует возникновению коррозии. Интересно, что такое действие хрома актуально исключительно при невысоком содержании углерода. Поскольку в обратном случае эти два элемента начинают вступать в реакцию, образуя карбид, который, напротив, ускоряет процесс ржавления.

  • Никель. Еще один постоянно использующийся материал. Его может быть очень много, даже более 50%. Но для того чтобы получить из железа аустенит, достаточно всего 9-12 процентов. Химическое вещество очень положительно воздействует на пластичность – она становится выше. Кроме того, зернистость становится меньше, что хорошо сказывается на прочности.

  • Углерод. Добавляют обычно сотые, десятые доли. Этого достаточно для того, чтобы повысить прочность. Это обусловлено тем, что вещество приводит к образованию карбидов.

  • Азот. Он заменяет углерод, если тот нельзя добавлять в сплав по каким-либо причинам, например, если изделие должно обладать стойкостью к электрическому и химическому воздействию.

  • Бор. Очень хорошо увеличивает пластичность, даже если вещество находится в очень небольшом количестве, а зерно становится меньше.

  • Кремний и марганец. Добавляют для стабилизации аустенита, а также для повышения прочности.

  • Титан и ниобий. Применяют при изготовлении хладостойких сплавов.

Применение аустенитных сталей

Наиболее частое использование:

  • Любые элементы, которые используются при высоких температурах – более 200 градусов (вплоть до 1100). Это могут быть самолетные турбины или различные детали в двигателе. Однако следует внимательно следить за тем, какие химические реакции будут происходить при контакте с топливом, паром и другими агрессивными средами. Иногда возникают трещины. Чтобы предотвратить такую возможность, следует добавить такие примеси как ванадий и ниобий. С ними будет сформирована карбидная фаза, за счет чего происходит упрочнение поверхности.

  • Различные механизмы, которые подвергаются быстрым температурным перепадам. Например, при сварке некоторых материалов.

  • Электрическое оборудование, контакты. Их можно сделать благодаря тому, что аустенит устойчив к электромагнитным волнам.

  • Детали для устройств, работающих в водной среде или в условиях повышенной влажности. Это возможно из-за коррозионной устойчивости. Никель и хром, которые способствуют этой характеристики, также продлевают износ элемента.

Марки аустенитной стали

Все классы можно поделить на три категории:

  • Коррозионностойкие: 08Х18Н10, 12Х18Н10Т, 06Х18Н11 (они содержат хром и никель), 10Х14Г14Н4Т, 07Х21Г7АН5 (с добавкой марганца), 08Х17Н13М2Т, 03Х16Н16ЬЗ (особенность – наличие молибдена), 02Х8Н22С6, 15Х18Н12С4Т10 (в них много кремния).

  • Жаропрочные, например, 08Х16Н9М2, 10Х14Н16Б, 10Х18Н12Т, 10Х14Н14В2БР. Особенностью является наличие в них бора, вольфрама, ниобия, ванадия или молибдена.

  • Хладостойкие: 03Х20Н16АГ6 и 07Х13Н4АГ20, в них очень много хрома и никеля.

Обратите внимание на маркировку, она обусловлена нормативным документом, ниже о нем.

ГОСТ 5632-2014

Данный документ диктует требования к каждой конкретной марке. В представленных там таблицах перечисляются качества и показатели, которые отвечают за итоговый результат – прочность, износостойкость и пр. Посмотрим на маркировку и отметим, что она сочетает в себе цифры и буквы.

Литеры обозначают ту легирующую добавку, которая находится в наибольшем количестве (мельчайшие примеси могут не отображаться в названии, но будут перечислены в техническом паспорте сплава). В самом начале стоит только цифра – это сотые доли углерода. Затем буква добавки с последующим уточнением – сколько процентов.

Посмотрим на простом примере. 06Х18Н11, в этой марке:

  • 0,06% углерода;

  • 18% хлора;

  • 11% никеля.

Представим таблицу элементов, которые содержатся в наиболее распространенных марках:

Особенности термообработки

Несмотря на то что данный материал обладает повышенными прочностными характеристиками, он очень плохо подвергается металлообработке. Обычно, чтобы улучшить качества заготовки используется один из методов:

  • Отжиг. Данный процесс заключается в нагреве до высоких температур (изменения кристаллической решетки) с последующей выдержкой на протяжении нескольких часов. После этого происходит охлаждение одним из способов – в масле, воде, на воздухе при комнатных условиях. Это способствует снижению твердости аустенитных сталей.

  • Двойная закалка. Повторная процедура нагрева позволяет повысить жаропрочность материала. Дополнительно зачастую используют старение.

Аустенит – очень часто используемый сплав. Чтобы подробнее разобраться в теме, посмотрим видео:

Источник: https://www.rocta.ru/info/austenitnaya-stal-chto-eto-takoe-marki-klass-svojstva-primenenie/