Что делают из алюминиевой руды?

Содержание

5 вещей из алюминия, без которых мы не можем представить свою жизнь

Что делают из алюминиевой руды?

— События — 5 вещей из алюминия, без которых мы не можем представить свою жизнь

Алюминий стал широко доступен только в 20 веке в большей степени благодаря авиационной промышленности. Если сделать опрос людей какие вещи из алюминия они знают, мы можем увидеть замешательство. Мы не придаем значения тому, что мы держим в руках или видим каждый день вокруг себя. При этом, сегодня все еще является весьма актуальным собирать и сдавать на вторичную переработку алюминиевый лом.

Алюминий и его сплавы — широко распространены как технический металл. Некоторые виды использования алюминия могут быть не очевидны сразу. Например, вы знали, что алюминий используется в производстве стекла?

Алюминий невероятно популярен, потому что он легкий, крепкий, устойчив к коррозии, долговечный, пластичный, податливый, проводящий и не имеет запаха.

Алюминий также пригоден для переработки на 100% без потери своих природных свойств. Кроме того, для переработки лома алюминия требуется 5% энергии, чем для производства нового алюминия.

Вот 5 вещей из алюминия, без которых сегодня очень трудно представить нашу жизнь.

Транспортные средства

Здесь мы имеем в виду в первую очередь аэрокосмическую и автомобильную промышленность: авиадетали, автомобили, а также поезда, судна, мототранспорт и велосипеды.

Аэрокосмическая промышленность любит алюминий по причине легкости веса, поскольку его снижение имеет решающее значение для самолетов и космических аппаратов. По этой же причине широко используют алюминий и в автомобильном производстве. Он помог снизить вес легковых и грузовых автомобилей и, таким образом, несколько улучшить эффективность использования топлива.

Фактически, алюминий использовался еще до изобретения самолетов в рамах дирижаблей Zeppelin. Сегодня современные самолеты используют алюминиевые сплавы повсюду, от фюзеляжа до приборов кабины. Даже космические корабли, такие как космические челноки, содержат в своих частях от 50 до 90% алюминиевых сплавов.

Автомобильная промышленность все еще в значительной степени зависит от стали. Несмотря на это стремление повысить эффективность использования топлива и сократить выбросы CO2 привело к гораздо более широкому использованию алюминия в производстве автомобилей. Алюминий делает Teslas и Fords более легкими и более энергоэффективными. Эксперты прогнозируют, что к 2025 году среднее содержание алюминия в автомобиле увеличится на 60%.

Высокоскоростные железнодорожные системы, такие как Shinkansen в Японии и Maglev в Шанхае, также используют алюминий. Металл позволяет конструкторам снизить вес поездов, снижая сопротивление трения.

Тем не менее, пока алюминий обеспечивает небольшой вес деталям автомобильного производства. А мы можем передвигаться на большие расстояния, подниматься в небо и переплывать моря и океаны.

Строительные материалы

Строительство и строительная индустрия не исключение для использования алюминия.

В течение почти ста лет алюминиевые сплавы применяются в строительстве домов и офисных зданий. Наиболее известным является Эмпайр Стейт Билдинг. Он был одним из первых современных сооружений, которые в значительной степени были изготовлены из алюминия, в том числе на его культовый шпиль.

В настоящее время алюминий широко признан одним из самых энергоэффективных и устойчивых строительных материалов, доступных на рынке. Мы используем оконные рамы, фасадные панели, кровельные материалы и ставни.

Алюминий обладает высокой коррозионной стойкостью. Анодированный алюминий обладает высокой восприимчивостью к полировке и невероятно долгим сроком службы. Для строительной отрасли это важный фактор, поскольку затраты на длительное техническое обслуживание будут намного ниже, чем у сопоставимых материалов. Алюминий также не подвержен атмосферным воздействиям и может очень хорошо противостоять как  влажному, так и в сухому климату, а также не становится хрупким при низких температурах. Сегодня мы можем воплотить практически любое дизайнерское решение с помощью этого материала.

Потребительские товары

В потребительских товарах причиной частого использования алюминия является легкость и внешний вид. В результате алюминий используют при изготовлении телефонов и ударопрочных для них защитных стекол, ноутбуков, спортивногох и туристического снаряжения, сковородок и кастрюль.

Кастрюля или сковородка из алюминия поглощает всего 7% тепла, остальное отдает пище. Эти алюминиевые изделия хорошо проводят тепло, не токсичны, устойчивы к ржавчине и легко чистятся.

Использование в производстве гаджетов позволят добиться легкого веса, эргономичного и привлекательного дизайна. Apple в своих iPhone и MacBook использует преимущественно детали из алюминия. Также сильно предпочитают алюминий, для изготовления своих изделий и другие высокотехнологичные бренды электроники, такие как производитель аудиотехники Bang & Olufsen.

Да, про защитные стекла! Команда исследователей из Токийского университета и Японского института синхротронного излучения создала стекло, пропитанное оксидом алюминия, что они называют аэродинамической левитацией. В результате получилось стекло, которое не разбивается при падении или при ударе другим предметом. Именно такие стекла используют в самых разных областях, от автомобильных окон до смартфонов и планшетов.

Промышленные товары

К промышленным товарам, которые изготавливают из алюминия сегодня можно отнести осветительные приборы, термозащитные пленки (отражатели) радиаторы.

Так, по соотношению прочности, теплоотдачи и легкости алюминиевые радиаторы значительно превосходят стальные или металлические.
Теплозащитные пленки изготавливают из специальной изоляционной пены, покрытой алюминиевой фольгой. Служа эффективной пленкой радиатора, она предотвращает тепловые потери энергии через стены, отражая тепло, выделяемое радиатором, обратно в помещение. Такая алюминиевая теплоотражающая фольга позволяет значительно уменьшить количество энергии, необходимое для комфортного обогрева помещения.

Также, превосходные свойства алюминия делают его  оптимальным выбором для опор и кронштейнов для наружного освещения. При контакте с воздухом алюминий образует защитный слой из оксида алюминия, который защищает от коррозии. Эта естественная устойчивость к коррозии гарантирует, что алюминиевый осветительный столб выдержит воздействие времени, температуры и влажности, а также обеспечит долгие годы службы.

Фольга и упаковка

Алюминий все больше и больше заменяет пластиковые и стальные компоненты, так как он прочнее и жестче, чем пластик, и легче — чем сталь. Такие характеристики позволяют алюминиевым изделиям быстро рассеивать тепло, предохраняя электронные устройства от перегрева.

Сегодня алюминий используется для изготовления  фольги для выпечки, лотков для еды, банок для аэрозолей, а также крышек для бутылок.

Алюминиевая фольга представляет собой тонкий, блестящий лист бумаги алюминиевого металла. Он изготавливается путем прокатки больших алюминиевых листов до толщины менее 0,2 мм.

Дома люди используют алюминиевую фольгу для хранения продуктов, для покрытия поверхностей выпечки и для упаковки продуктов, таких как мясо, чтобы они не теряли влагу во время приготовления пищи.

Ну и один из наиболее распространенных видов алюминиевой тары в нашей жизни – алюминиевые банки для напитков. Одна алюминиевая банка состоит из сплава алюминия, 1% марганца, 1% магния, 0,2% кремния и 0,15% меди. Внутренняя поверхность банки покрывается специальным лаком, чтобы избежать контакт металла и напитка. Алюминиевые банки имеют самую высокую стоимость лома, субсидируя сбор и переработку других материалов. Они могут быть переработаны и возвращены на полку магазина в виде новой банки всего за 60 дней.

Интересные факты про алюминий

  • 8% внешней коры Земли (по весу) состоит из алюминия.
  •  Один Boeing-747 содержит более 66 000 кг алюминия.
  • Алюминиевая фольга обычно имеет толщину менее 0,15 мм.
  • Чтобы изготовить 1 кг чистого алюминия потребуется около 2–3 кг алюминиевой руды (боксита).
  • Для производства чистого алюминия из переработанных банок требуется в 20 раз меньше энергии, чем из бокситов.
  • Китай в 2017 году произвел более половины мирового объема алюминия (примерно 32 000 тысяч метрических тонн).
  • В Германии примерно 95% банок проходят вторичную переработку.  США перерабатывают 70% алюминиевых банок для напитков.
  • Ежегодно производится около 180 млрд банок для напитков. Как правило, алюминиевые банки изготавливаются из 70% переработанного металла, который сдают как вторичное сырье – лом алюминиевых банок в перерабатывающие компании.

И напоследок из интересного: алюминиевая пудра + йод + несколько капель воды = эффектное шоу. Вы увидите облака токсичного пурпурного пара йода, а затем пламя.

Реакция — демонстрация того, насколько активным может быть алюминий.

Читайте также  Чем заклеить алюминиевый блок двигателя?

Пожалуйста, не пытайтесь повторить это самостоятельно.

И — сортируйте вашу алюминиевую тару отдельно, ведь ей можно дать вторую и третью жизнь!

Источник: https://www.vtorma.ua/ru/5-veshhej-iz-alyuminiya-bez-kotoryh-my-ne-mozhem-predstavit-svoyu-zhizn/

Алюминиевая промышленность

Что делают из алюминиевой руды?
статьи

Алюминиевая промышленность. В 1854 А.Девиль изобрел первый практический способ промышленного производства алюминия. Рост производства был особенно быстрым во время и после Второй мировой войны. Производство первичного алюминия (без учета производства Советского Союза) составляло только 620 тыс. т в 1939, но возросло до1,9 млн. т в 1943. К 1956 во всем мире производилось 3,4 млн. т первичного алюминия; в 1965 мировое производство алюминия составило 5,4 млн. т, в 1980 – 16,1 млн. т, в 1990 – 18 млн. т.

Производство алюминия включает три основные стадии: добыча и обогащение руды; получение из руды чистой окиси алюминия (глинозема); восстановление алюминия из окиси путем электролиза.

Добыча и обогащение руды

Основная алюминиевая руда – бокситы – добывается главным образом в карьерах; крупнейшими производителями бокситов являются Австралия, Гвинея, Ямайка и Бразилия. Обычно слой руды взрывается для образования рабочей площадки на глубине до 20 м, а потом выбирается. Куски руды дробятся и сортируются с помощью грохотов и классификаторов.

Дробленая руда далее обогащается, а пустая порода (хвосты) выбрасывается. На этой стадии процесса экономически выгодно использовать методы промывки и грохочения, использующие разность плотностей руды и пустой породы для отделения их друг от друга. Менее плотная пустая порода уносится промывочной водой, а концентрат оседает на дно обогатительной установки. См.

также РУДЫ ОБОГАЩЕНИЕ.

Процесс Байера

Процесс получения чистой окиси алюминия включает нагревание боксита с едким натром, фильтрование, осаждение гидроокиси алюминия и ее прокаливание для выделения чистого глинозема. На практике руда смешивается с нужным количеством горячего едкого натра в автоклаве из низкоуглеродистой стали, и смесь прокачивается через ряд стальных сосудов с паровой рубашкой. В сосудах поддерживается давление пара 1,4–3,5 МПа в течение времени от 40 мин до нескольких часов, пока не завершится переход окиси алюминия из боксита в раствор алюмината натрия в перегретой жидкости.

После охлаждения твердый осадок отделяется от жидкости. Жидкость фильтруется; в результате получается пересыщенный чистый раствор алюмината. Этот раствор метастабилен: алюминат-ион разлагается с образованием гидроокиси алюминия. Добавление в раствор кристаллической гидроокиси алюминия, остающейся от предыдущего цикла, ускоряет разложение. Сухие кристаллы гидроокиси алюминия затем прокаливаются для отделения воды. Получающийся безводный глинозем пригоден для использования в процессе Холла – Эру.

По экономическим соображениям в промышленности эти процессы стремятся делать по возможности непрерывными.

Электролиз Холла – Эру

Заключительная стадия производства алюминия включает его электролитическое восстановление из чистой окиси алюминия, полученной в процессе Байера. Этот способ извлечения алюминия основывается на том (открытом Холлом и Эру) факте, что когда глинозем растворяется в расплавленном криолите, при электролизе раствора выделяется алюминий.

Типичный электролизер Холла – Эру представляет собой ванну с расплавленным криолитом 3NaF Ч AlF3 (Na3AlF6) – двойным фторидом натрия и алюминия, в котором растворено 3–5% глинозема, – плавающим на подушке из расплавленного алюминия. Стальные шины, проходящие через подину из углеродистых плит, используются для подачи напряжения на катод, а подвешенные угольные бруски, погруженные в расплавленный криолит, служат анодами. Рабочая температура процесса близка к 950° С, что значительно выше температуры плавления алюминия.

Температура в электролизной ванне регулируется изменением зазора между анодами и катодным металлоприемником, на который осаждается расплавленный алюминий. Для поддержания оптимальной температуры и концентрации глинозема в современных электролизерах применяются сложные системы управления. На производство алюминия расходуется очень много электроэнергии, поэтому энергетический КПД процесса – главная проблема в алюминиевой промышленности.

Электродные реакции представляют собой восстановление алюминия из его окиси и окисление углерода до его окиси и двуокиси на анодах. Одна печь дает до 2,2 т алюминия в сутки. Металл сливается раз в сутки (или реже), потом флюсуется и дегазируется в отражательной копильной печи и разливается по формам.

Возобновляемые электроды Содерберга

В электролизере Холла – Эру угольные аноды расходуются со скоростью 2,5 см/сут, так что часто требуется установка новых анодов. Чтобы исключить частое вмешательство человека в производство, был разработан процесс с использованием возобновляемого электрода Содерберга.

Анод Содерберга непрерывно образуется и спекается в восстановительной камере из пасты – смеси 70% молотого кокса и 30% смоляной связки. Эта смесь набивается в прямоугольную оболочку из листовой стали, открытую с обоих концов и расположенную вертикально над ванной с расплавом внутри печи. По мере расходования анода в верхнее отверстие оболочки добавляется паста.

Когда коксосмоляная смесь опускается вниз и нагревается, она спекается в твердый углеродистый брусок прежде, чем достигает рабочей зоны.

Потребление алюминия

Около 28% производимого алюминия идет на изготовление банок для напитков, пищевой тары и всевозможных упаковок. Еще 17% используется в транспортных средствах, включая самолеты, военную технику, железнодорожные пассажирские вагоны и автомобили. Около 16% применяется в конструкциях зданий.

Примерно 8% используется в высоковольтных линиях электропередачи и других электрических устройствах, 7% – в таких потребительских товарах, как холодильники, кондиционеры воздуха, стиральные машины и мебель. На нужды машиностроения и промышленное оборудование расходуется 6%.

Остающаяся часть потребляемого алюминия используется в производстве телевизионных антенн, пигментов и красок, космических кораблей и судов. См. также ХОЛЛ, ЧАРЛЗ МАРТИН.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/ALYUMINIEVAYA_PROMISHLENNOST.html

Алюминиевая руда и применение свойств чистого алюминия в народном хозяйстве

Что делают из алюминиевой руды?

Алюминий — это металл, покрытый матово-серебристой оксидной плёнкой, свойства которого определяют его популярность: мягкость, лёгкость, пластичность, высокая прочность, устойчивость к коррозии, электропроводность и отсутствие токсичности. В современных высоких технологиях применению алюминия отведено ведущее место как конструкционному, многофункциональному материалу.

Наибольшую ценность для промышленности в качестве источника алюминия представляет природное сырьё — алюминиевая руда, составляющая горной породы в виде бокситов, алунитов и нефелина.

Разновидности глинозёмсодержащих руд

Известно более 200 минералов, в состав которых входит алюминий.

Сырьевым источником считают только такую горную породу, которая может соответствовать следующим требованиям:

  • Природное сырьё должно иметь высокое содержание окислов алюминия;
  • Месторождение должно соответствовать экономической целесообразности его промышленной разработки.
  • Горная порода должна содержать алюминиевое сырьё в форме, подлежащей извлечению в чистом виде известными способами.

Особенность природной горной породы боксита

Сырьевым источником могут служить природные залежи бокситов, нефелинов, алунитов, глин, и каолинов. Наиболее насыщены соединениями алюминия бокситы. Глины и каолины представляют самые распространённые породы со значительным содержанием в них глинозёма. Залежи этих минералов находятся на поверхности земли.

Алюминиевая руда в природе существует только в виде бинарного соединения металла с кислородом. Добывают это соединение из природных горных руд в виде бокситов, состоящих из окислов нескольких химических элементов: алюминия, калия, натрия, магния, железа, титана, кремния, фосфора.

В зависимости от месторождения бокситы в своём составе имеют от 28 до 80% глинозёма. Это основное сырьё для получения уникального металла. Качество бокситов как сырья алюминия зависит от содержания в нём глинозёма. Этим определяются физические свойства бокситов:

  • Минерал представляет скрыто кристаллическую структуру или пребывает в аморфном состоянии. Многие минералы имеют затвердевшие формы гидрогелей простого или комплексного состава.
  • Цвет бокситов в различных точках добычи колеблется от почти белого до красных тёмных цветов. Есть месторождения с чёрной окраской минерала.
  • Плотность алюминий содержащих минералов зависит от их химического состава и составляет около 3 500 кг/м3.
  • Химический состав и структура бокситов определяет твёрдые свойства минерала. Самые прочные минералы отличаются твёрдостью в 6 единиц по шкале, принятой в минералогии.
  • Как природное ископаемое боксит имеет ряд примесей, чаще всего это окислы железа, кальция, магния, марганца, примеси титановых и фосфорных соединений.

Бокситы, каолины, глины в своём составе содержат примеси других соединений, которые при переработке сырья выделяются в отдельные производства.

Только в России используют месторождения с залежами пород, в составе которых глинозём составляет более низкую концентрацию.

С недавних пор глинозём стали получать из нефелинов, которые помимо глинозёма содержат окиси таких металлов, как калий, натрий, кремний и, не менее ценный, квасцовый камень, алунит.

Способы переработки алюминий содержащих ископаемых

Технология получения чистого глинозёма из алюминиевой руды не изменилась со времён открытия этого металла. Совершенствуется его производственное оборудование, позволяющее получать чистый алюминий. Основные производственные стадии получения чистого металла:

  • Добыча руды из разработанных месторождений.
  • Первичная обработка от пустых пород с целью повышения концентрации глинозёма – процесс обогащения.
  • Получение чистого глинозёма, электролитическое восстановление алюминия из его окислов.

Производственный процесс завершается получением металла с концентрацией 99,99%.

Добыча и обогащение глинозёма

Глинозём или алюминиевые окислы, в чистом виде в природе не существует. Его извлекают из алюминиевых руд, используя гидрохимические методы.

Залежи алюминиевой руды в месторождениях обычно взрывают, обеспечивая площадку для её добычи на глубине примерно 20 метров, откуда её выбирают и запускают в процесс дальнейшей обработки;

  • Используя специальное оборудование (грохоты, классификаторы), руду дробят и сортируют, отбрасывая пустую породу (хвосты). На этом этапе обогащения глинозёма пользуются способами промывки и грохочения, как наиболее выгодными экономически.
  • Осевшую на дне обогатительной установки очищенную руду смешивают с разогретой массой едкого натра в автоклаве.
  • Смесь пропускают через систему сосудов из высокопрочной стали. Сосуды оснащены паровой рубашкой, поддерживающей необходимую температуру. Давление пара поддерживается на уровне 1,5-3,5 Мпа до полного перехода алюминиевых соединений, из обогащённой породы в алюминат натрия в перегретом растворе едкого натрия.
  • После охлаждения жидкость проходит стадию фильтрации в результате которой происходит отделение твёрдого осадка и получение пересыщенного чистого раствора алюмината. При добавлении в полученный раствор остатков гидроокиси алюминия от предыдущего цикла, разложение ускоряется.
  • Для окончательной осушки гидрата окиси алюминия применяют процедуру прокаливания.
Читайте также  Как срастить алюминиевый и медный провод?

Электролитическое производство чистого алюминия

Чистый алюминий получают, используя непрерывный процесс в результате которого прокалённый алюминий вступает в стадию электролитического восстановления.

Современные электролизёры представляют устройство, состоящее следующих частей:

  • Из стального кожуха, футерованного угольными блоками и плитами. В процессе работы на поверхности корпуса ванны образуется плотная плёнка из застывшего электролита, предохраняющая футеровку от разрушения расплавом электролита.
  • Слой расплавленного алюминия на дне ванны, толщиной 10–20 см, служит катодом в этой установке.
  • Ток в алюминиевый расплав подводится через угольные блоки и встроенные стальные стержни.
  • Аноды, подвешенные на железную раму с помощью стальных штырей, обеспечены тягами, соединёнными с подъёмным механизмом. По мере сгорания анод опускается вниз, а стержни применяют в качестве элемента для подвода тока.
  • В цехах электролизёры устанавливают последовательно в несколько рядов (два или четыре ряда).

Дополнительная очистка алюминия рафинированием

Если алюминий, извлечённый из электролизёров, не соответствует конечным требованиям, его подвергают дополнительной очистке рафинированием.

В промышленности этот процесс проводят в особенном электролизёре, в котором содержится три жидких слоя:

  • Нижний – рафинируемый алюминий с добавкой примерно 35% меди, служит анодом. Медь присутствует для утяжеления алюминиевого слоя, в анодном сплаве медь не растворяется, его плотность должна превышать 3000 кг/м3.
  • Средний слой представляет смесь фторидов и хлоридов бария, кальция, алюминия с температурой плавления около 730оС.
  • Верхний слой – чистый рафинированный алюминиевый расплав, который растворяется в анодном слое и поднимается вверх. Он служит в этой схеме катодом. Подвод тока осуществляется графитовым электродом.

В процессе электролиза примеси остаются в анодном слое и электролите. Выход чистого алюминия составляет 95–98%. Разработке алюминий содержащих месторождений, отведено ведущее место в народном хозяйстве, благодаря свойствам алюминия, который в настоящее время занимает второе место после железа в современной промышленности.

Источник: https://kamni.guru/ukrasheniya/metally/osnovnye-svoystva-alyuminievoy-rudy-dlya-primeneniya-v-promyshlennosti.html

алюминий

Что делают из алюминиевой руды?

Алюминий (Al) – материал, из которого изготавливается большой ассортимент металлопроката. Этот металл востребован в различных сферах промышленности, строительстве и народном хозяйстве. Из него производят следующие разновидности продукции: листы, углы, профили, круги, рулоны, прутки, полосы, двутавры, швеллеры. Прочность, легкость обработки и доступная стоимость обусловили хороший спрос на данный продукт.

Физико-химические свойства

Алюминий – 13-й элемент в таблице Менделеева, относится к легким металлам. Его цвет – серебристо-белый. В природе он встречается в виде соединений в силу своей сильной химической активности. В нормальных условиях на поверхности алюминия присутствует оксидная пленка, которая делает его невосприимчивым к окислителям и коррозии. При вступлении в реакцию со щелочью и растворами солей аммония она разрушается, и тогда этот металл используется как сильный восстановитель.

К основным физическим свойствам относятся:

  • Высокие прочностные характеристики за счет соединения с другими металлами;
  • Небольшой вес – намного легче меди и железа;
  • Стойкость к коррозии;
  • Быстрое нагревание, как и у железа;
  • Отличная электропроводность и теплопроводность;
  • Устойчивость к огню, температурным перепадам;
  • Возможность вторичной обработки;
  • Не подверженность ржавчине в отличие от железа;
  • Простота формования благодаря мягкости и пластичности – можно согнуть, смять и свернуть в трубочку.

Чтобы увеличить прочность, этот металл сплавляют с магнием, медью, кремнием. Алюминиевые сплавы остаются крепкими в условиях низких температур. Их все разделяют на литейные и деформируемые. Алюминиево-бронзовые – превосходят бронзу по химической стойкости.

Добыча

После кислорода и кремния этот металл – наиболее распространенный элемент в земной коре, где он присутствует в виде соединений с другими элементами. Его получают из алюминиевых руд. Наиболее высокое содержание (50% оксидов этого металла+глинозем, содержащий этот компонент) находится в бокситах, которые залегают на поверхности земли. Наилучшие залежи этих минералов расположены в экваториальных и тропических регионах.

Для их добычи используется сложное оборудование: краны, машины для раздачи глинозема, установка по газоочистке, электролизер. Также в ходе процедуры задействованы просторные помещения и мощная электросеть. Поэтому заводы по производству этого продукта обычно расположены вблизи электростанций. В современных условиях этот металл получают благодаря процессу Холла-Эру.

Область применения

Алюминиевая плита. Обладает шумоизолирующими свойствами, защищает от вибрации, огня и влаги. Из нее изготавливаются различные строительные конструкции, декоративные элементы крыш, окантовки, круги, балки, профили. Она – важный элемент в машиностроении, где ее используют как основу для несущих стоек. В авиационной промышленности эта продукция применяется для облицовки фюзеляжей и в самой конструкции планеров. Также этот продукт важен для получения топливного и гидравлического оборудования.

Алюминиевый лист. Благодаря разнообразию форм используется в декорировании зданий. Также он востребован при изготовлении каркасов, фильтров и вентиляционных коробов. Из него производят баки, канистры для продуктов, контейнеры, столешницы, мойки. Материал не вступает в реакции с пищей, не выделяет опасных веществ и не влияет на вкусовые качества.

Алюминиевая труба. Незаменима при обустройстве трубопроводов для добычи нефти, так как не вступает в реакции с веществами. Благодаря хорошей пропускной способности такая продукция – оптимальный вариант при разработке канализации и водопровода. Вода по ним двигается быстро, без образования пробок.

Алюминиевая проволока. Применяется для сварочных работ, при монтаже электролиний, в электротехнике, в системах грозозащиты. Является сырьем в производстве кабельной и проводниковой продукции. Также из нее производят инвентарь для торговли, элементы фасадов, дизайнерские детали для домов, посуду.

Алюминиевые уголки. Востребованы при изготовлении корпусной и мягкой мебели, рекламного оборудования, шкафов, стеллажей. Это любимый элемент дизайнеров, так как он не просто защищает мебельные конструкции, но и подчеркивает их оригинальность. Небольшие и узкие разновидности также востребованы при установке оконных рам. Крупные изделия – при монтаже крупногабаритных конструкций.

Алюминиевый пруток. Не намагничивается, не боится перепадов температуры, имеет хорошую электропроводность и легкий вес. Используется в станкостроении и машиностроении. Применяется в качестве заготовок для производства крепежей, стойких к агрессивным веществам. Из него получают детали редукторов, клапаны, силовые элементы, компоненты сварных конструкций, опорную арматуру.

Отличия алюминиевых сплавов

Сплавы АД1 представляют собой технический алюминий, содержат до 0,7% примесей, среди которых главная роль принадлежит кремнию и железу. Они стойкие к воздействиям химических веществ. Подходят в качестве материалов для резервуаров, прокладок, шайб.

АД31 склонен к упрочнению при термической обработке, содержит: Al, Mg, Si. Имеет высокую пластичность, не подвержен ржавчине. Из него получаются сложные по форме полуфабрикаты. Он прост в обработке, хорошо поддается окрашиванию. Из него получают профили, емкости для перевозки азотной кислоты, продуктов питания.

Также он является материалом для фляг, консервных банок, пробок бутылок.

В сплаве В95, помимо Al, присутствует цинк, магний и медь. Самый прочный среди всех разновидностей, поэтому востребован в конструкциях с высокой нагрузкой. Из него выпускают плиты, ленты, профили. Под точечной нагрузкой склонен к коррозийному разрушению.

Д16 очень распространен, представляет алюминиевый сплав с медью и магнием. Его можно деформировать в холодном и горячем состоянии. Не предназначен для сваривания. Сплав Д16т – дюралюминий, востребованный в авиа и судостроении. В три раза легче стали, не подвержен микроскопической деформации. Хорошо обрабатывается на токарных станках. Буква Т обозначает, что он искусственно состаренный. В таком состоянии он очень прочный, не подвержен коррозийному влиянию.

Под обозначением АМГ следует понимать алюминиево-магниевые сплавы. Не упрочняются термической обработкой. Незаменимы в технологиях глубокой штамповки. Морозоустойчивы, пластичны. Цифры, следующие за буквенными обозначениями, указывают на количество магния.

Сплав А5 – первичный алюминий, из которого делают проволоку, фольгу, слитки.

АМЦ содержит алюминий и марганец. Пластичный, но малопрочный. Среди достоинств таких сплавов – стойкость к коррозии, способность без труда свариваться контактной, газовой, атомно-водородной сваркой. Склонны к деформации как в холодном, так и в горячем состоянии в пределах 320-470 ° C.

Источник: https://cuprum-metall.ru/informatsiya/alyuminiy/

Алюминиевая руда — от добычи до получения металла. Страны-лидеры по добыче алюминия

Что делают из алюминиевой руды?

Впервые алюминиевая руда в виде серебристого металла  была получена в 1825 году в объеме всего лишь нескольких миллиграмм, и до появления массового производства этот металл был дороже золота. Например, одна из королевских корон Швеции имела в своем составе алюминий, а Д. И. Менделеев в 1889 году получил от британцев дорогой подарок – весы из золота и алюминия.

Какое сырье необходимо для получения алюминиевой руды? Как производят один из самых необходимых в современности материалов?

Читайте также  Что тяжелее алюминий или медь?

Бокситовая руда – основа мирового производства алюминия

Непосредственно сам серебристый металл получают из глинозема. Это сырье представляет собой оксид алюминия (Аl2О3), получаемый с руд:

  • Бокситов;
  • Алунитов;
  • Нефелиновых сиенитов.

Самый распространенный источник получения исходного материала это бокситы, их и считают основной алюминиевой рудой.

Несмотря на уже более чем 130 летнюю историю открытия, понять происхождение алюминиевой руды до сих пор не удалось. Возможно, что попросту в каждом регионе сырье образовалось под воздействием определенных условий. И это создает затруднения, чтобы вывести одну универсальную теорию об образовании бокситов. Основных гипотез происхождения алюминиевого сырья три:

  1. Они образовались вследствие растворения некоторых типов известняков, как остаточный продукт.
  2. Боксит получился в результате выветривания древних пород с дальнейшим их переносом и отложением.
  3. Руда является результатом химических процессов разложения железных, алюминиевых и титановых солей, и выпала как осадок.

Однако, алунитовые и нефелиновые руды образовывались в отличных условиях от бокситов. Первые формировались в условиях активной гидротермальной и вулканической деятельности. Вторые — при высоких температурах магмы.

Алюминиевая руда

Как результат, алуниты, в основном, имеют рассыпчатую пористую структуру. В их составе имеется до 40% различных оксидных соединений алюминия. Но, кроме собственно самой алюмниеносной руды в залежах, как правило, имеются добавки, что влияет на рентабельность их добычи. Считается выгодным разрабатывать месторождение при 50-ти процентном соотношении алунитов к добавкам.

Нефелины обычно представлены кристаллическими образцами, которые кроме алюминиевого оксида содержат добавки в виде различных примесей. Зависимо от состава, такой тип руды классифицируют по типам. Самые богатые имеют в своем составе до 90% нефелинов, второсортные 40-50%, если минералы беднее этих показателей, то не считается нужным вести их разработку.

Имея представления, о происхождении полезных ископаемых, геологическая разведка может довольно точно определить места нахождения залежей алюминиевых руд. Также условия формирования, влияющие на состав и структуру минералов, определяют способы добычи. Если месторождение считается рентабельным, налаживают его разработку.

Свойства алюминиевой руды

Боксит представляет собой сложное соединение оксидов алюминия, железа и кремния (в виде различных кварцев), титана, а также с небольшой примесью натрия, циркония, хрома, фосфора и прочих.

Медная руда: свойства, применение, добыча

Самым важным свойством в производстве алюминия является «вскрываемость» бокситов. То есть насколько просто будет отделить от него ненужные кремниевые добавки, чтобы получить исходное сырье для выплавки металла.

Основа получения алюминия – глинозем. Чтобы он образовался, руду перемалывают в мелкий порошок, и прогревают паром, отделяя большую часть кремния. И уже эта масса будет сырьем для выплавки.

Чтобы получить 1 тонну алюминия, потребуется около 4-5 тонн бокситов, с которых после обработки образуется около 2 тонн глинозема, а уже потом можно получить металл.

Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды

Способы добычи алюминиевой руды

При незначительной глубине залегания алюминиеносных пород их добыча ведется открытым способом. Но, сам процесс срезания пластов руды будет зависеть от ее вида, и структуры.

  • Кристаллические минералы (чаще бокситы, или нефелины), снимают фрезерным способом. Для этого используются карьерные комбайны. Зависимо от модели такая машина может вести срез пласта толщиной до 600 мм. Толща породы разрабатывается постепенно, образуя после прохода одного слоя полки.

Это делается для безопасного положения кабины оператора и ходовых механизмов, которые в случае непредвиденного обвала будут находиться на безопасном расстоянии.

  • Рыхлые алюминиевоносные породы исключают использование фрезерной разработки. Так как их вязкость забивает режущую часть машины. Чаще всего такие типы пород могут срезать при помощи карьерных экскаваторов, которые тут же грузят руду на самосвалы, для дальнейшей транспортировки.

Транспортирование сырья — это отдельная часть всего процесса. Обычно обогатительные комбинаты по возможности стараются возводить неподалеку от разработок. Это позволяет использовать ленточные транспортеры для подачи руды на обогащение. Но, чаще изъятое сырье перевозят самосвалами.
Следующий этап, обогащение и подготовка породы для получения глинозема.

  1. Руду при помощи ленточного транспортера перемещают в цех подготовки сырья, где может использоваться насколько дробильных аппаратов, измельчающих минералы поочередно до фракции приблизительно в 110 мм.
  2. Второй участок подготовительного цеха осуществляет подачу подготовленной руды, и дополнительных добавок на дальнейшую переработку.
  1. Следующий этап подготовки, это спекание породы в печах.

Также на этом этапе, возможна обработка сырья выщелачиванием   крепкими щелочами. Результатом становится жидкий алюминатный раствор (гидрометаллургическая обработка).

  1. Алюминатный раствор проходит стадию декомпозиции. На данном этапе получают алюминатную пульпу, которую в свою очередь отправляют на сепарацию, и выпаривание жидкой составляющей.
  2. После чего данную массу очищают от ненужных щелочей, и направляют на прокалку в печах. В результате такой цепочки образуется сухой глинозем необходимый для получения алюминия путем гидролизной обработки.

Сложный технологический процесс требует большого количества топлива, и известняка, а также электроэнергии. Это является основным фактором расположения алюминиевых комбинатов – возле хорошей транспортной развязки, и нахождения рядом залежей необходимых ресурсов.

Все о железной руде

Однако существует и шахтный способ извлечения, когда порода из пластов вырубается по принципу добычи каменного угля. После чего руду отправляют на подобные производства по обогащению, и извлечению алюминия.

Одна из самых глубоких «алюминиевых» штолен находится на Урале в России, ее глубина достигает 1550 метров!

Страны лидеры по добыче алюминиевых руд

Основные месторождения алюминия сосредоточены в регионах с тропическим климатом, а большая часть 73% залежей приходятся на всего 5 стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Из них самые богатые запасы имеет Гвинея более 5 млрд. тонн (28%от мировой доли).

Если разделить запасы и объемы по добыче, то можно получить следующую картину:

  • 1-е место – Африка (Гвинея).
  • 2-е место – Америка.
  • 3-е место – Азия.
  • 4-е место – Австралия.
  • 5-е – Европа.

Пятерка лидеров стран по добыче алюминиевой руды представлена в таблице

Страна Объемы добычи млн. тонн
Китай 86,5
Австралия 81,7
Бразилия 30,7
Гвинея 19,7
Индия 14,9

Также к основным добытчикам алюминиевых руд относятся: Ямайка (9,7 млн. т.), Россия (6,6), Казахстан (4,2), Гайана (1,6).

Разработка месторождений алюминиевых руд в России

В нашей стране есть несколько богатых залежей алюминиевых руд, сосредоточенных на Урале, и в Ленинградской области. Но, основным способом добычи бокситов у нас, является более трудоемкий закрытый шахтный метод, которым извлекают около 80% от общей массы руд в России.

Иностранные инвестиции в промышленности России

Лидеры по разработке месторождений – акционерное общество «Севуралбокситруда», АО Бакситогорский глинозем, Южно-Уральские бокситовые рудники. Однако их запасы исчерпываются. Вследствие чего России приходится импортировать около 3 млн. тонн глинозема в год.

Месторождение Запасы
Красная Шапочка (Урал) На 19 лет добычи
Горностайское и Горностайско-Краснооктябрьское На 18 лет добычи
Блиново-Каменское 10 лет
Кургазское 10 лет
Радынский карьер 7 лет

В общей сложности на территории страны разведано 44 месторождения различных алюминиевых руд (бокситов, нефелинов), которых по оценкам, должно хватить на 240 лет, при такой интенсивности добычи как сегодня.

Импорт глинозема обусловлен низким качеством руды в залежах, например, на месторождении Красная Шапочка добывают боксит с 50% глиноземным составом, тогда как в Италии извлекают породу с 64% оксида алюминия, а в Китае 61%.

Применение алюминиевой руды

В основном до 60% рудного сырья используется для получения алюминия. Однако богатый состав позволяет извлекать из него, и другие химические элементы: титан, хром, ванадий и прочие цветные металлы, необходимые в первую очередь в качестве легирующих добавок для улучшения качеств стали.

Как вспоминалось выше технологическая цепочка получения алюминия обязательно проходит через стадию образования глинозема, который также используют в качестве флюсов в черной металлургии.

Как распределяются расходы на поддержку промышленности?

Богатый состав элементов в алюминиевой руде используется и для производства минеральной краски. Также способом плавки производится глиноземный цемент – быстро застывающая прочная масса.

Еще один материал, получаемый из бокситов – электрокорунд. Его получают путем плавления руды в электропечах. Это очень твердое вещество, уступающее только алмазу, что делает его востребованным в качестве абразива.

Также в процессе получения чистого металла образуются отходы – красный шлам. Из него извлекают элемент – скандий, который применяется в производстве алюминиево-скандиевых сплавов, востребованных в автомобильной промышленности, ракетостроении, выпуске электроприводов, и спортивного оборудования.

Развитие современного производства требует все больших объемов алюминия. Однако не всегда рентабельно разрабатывать месторождения, или импортировать глинозем из-за границы. Поэтому все чаще используется выплавка металла с использованием вторичного сырья.

Импортозамещение — фактор экономической безопасности страны

Например, такие страны как США, Япония, Германия, Франция, Великобритания в основном производят вторичный алюминий, по объемам составляющий до 80% от общемировой выплавки.

Вторичный металл обходится намного дешевле, в сравнении с первичным, для получения которого тратится 20000 кВт энергии/1 тонну.

На сегодня алюминий, получаемый с различных руд, один из востребованных материалов позволяющих получать прочные и легкие изделия, не поддающиеся коррозии. Альтернатив металлу пока не найдено, и в ближайшие десятилетия объемы добычи руды, и выплавки будут только расти.

Источник: https://promdevelop.ru/alyuminievaya-ruda-ot-dobychi-do-polucheniya-metalla-strany-lidery-po-dobyche-alyuminiya/